1. Li Z, Zou D, Zhang J, et al. Use of 3D reconstruction of emergency and postoperative craniocerebral CT images to explore craniocerebral trauma mechanism. Forensic Sci Int 2015;255:106-11.
2. Lee S, Park J, Gong H, et al. Remarkable postmortem CT findings in forensic autopsy. Korean J Leg Med 2014;38:103-12.
3. Santarelli C, Argenti F, Uccheddu F, et al. Volumetric interpolation of tomographic sequences for accurate 3D reconstruction of anatomical parts. Comput Methods Programs Biomed 2020;194:105525.
4. Park SH, Yu HS, Kim KD, et al. A proposal for a new analysis of craniofacial morphology by 3-dimensional computed tomography. Am J Orthod Dentofacial Orthop 2006;129:600.
5. Kim DI, Lee UY, Park SO, et al. Identification using frontal sinus by three-dimensional reconstruction from computed tomography. J Forensic Sci 2013;58:5-12.
6. Byers SN. Introduction to forensic anthropology. 4th ed.Boston, MA: Pearson; 2011. p. 151-65.
7. Reichs KJ. Forensic osteology: advances in the identification of human remains. 2nd ed.Springfield, IL: Charles C Thomas; 1998. p. 163-6.
8. Stevenson JC, Mahoney ER, Walker PL, et al. Technical note: prediction of sex based on five skull traits using decision analysis (CHAID). Am J Phys Anthropol 2009;139:434-41.
9. Robles M, Carew RM, Morgan RM, et al. A step-by-step method for producing 3D crania models from CT data. Forensic Imaging 2020;23:200404.
10. Simmons-Ehrhardta TL, Ehrhardt CJ, Monson KL. Evaluation of the suitability of cranial measurements obtained from surface-rendered CT scans of living people for estimating sex and ancestry. J Forensic Radiol Imaging 2019;19:100338.
11. Kim DI, Lee UY, Han SH. Sex determination using three dimensional image of skull in Korean: metric study by discriminant function analysis. Korean J Phys Anthropol 2015;28:103-18.
12. Kim DI, Han SH. Non-metric study of the external occipital protuberance for sex determination in Koreans: using three-dimensional reconstruction images. Korean J Phys Anthropol 2015;28:239-45.
13. Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains. Arkansas Archeological Survey Research Series No. 44. Fayetteville, AR: Arkansas Archeological Survey; 1994.
14. Thompson T, Black S. Forensic human identification: an introduction. Boca Raton, FL: CRC Press; 2007. p. 199-226.
15. Choi BY, Chung IH. Sex discrimination with the metric measurements of the Korean dried pelvic bones by discriminant function analysis. Korean J Phys Anthropol 1999;12:151-8.
16. Ogawa Y, Imaizumi K, Miyasaka S, et al. Discriminant functions for sex discrimination of modern Japanese skulls. J Forensic Leg Med 2013;20:234-8.
17. Perera P, Pathmeswaran A. A pilot study on assessment of racial affinity of Sri Lankan population using discriminant function statistics and a few established morphological racial traits. Leg Med (Tokyo) 2009;11(Suppl 1):S182-5.
18. Fliss B, Luethi M, Fuernstahl P, et al. CT-based sex estimation on human femora using statistical shape modeling. Am J Phys Anthropol 2019;169:279-86.
19. d'Oliveira Coelho J, Curate F. CADOES: an interactive machine-learning approach for sex estimation with the pelvis. Forensic Sci Int 2019;302:109873.
20. du Jardin P, Ponsaille J, Alunni-Perret V, et al. A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int 2009;192:127.
21. Curate F, Umbelino C, Perinha A, et al. Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers. J Forensic Leg Med 2017;52:75-81.
22. Ekizoglu O, Hocaoglu E, Inci E, et al. Assessment of sex in a modern Turkish population using cranial anthropometric parameters. Leg Med (Tokyo) 2016;21:45-52.
24. Dong H, Deng M, Wang W, et al. Sexual dimorphism of the mandible in a contemporary Chinese Han population. Forensic Sci Int 2015;255:9-15.
25. Imaizumi K, Bermejo E, Taniguchi K, et al. Development of a sex discrimination method for skulls using machine learning on three-dimensional shapes of skulls and skull parts. Forensic Imaging 2020;22:200393.
26. Zhan MJ, Cui JH, Zhang K, et al. Estimation of stature and sex from skull measurements by multidetector computed tomography in Chinese. Leg Med (Tokyo) 2019;41:101625.
27. Ford JM, Decker SJ. Computed tomography slice thickness and its effects on three-dimensional reconstruction of anatomical structures. J Forensic Radiol Imaging 2016;4:43-6.
29. Robinson C, Eisma R, Morgan B, et al. Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci 2008;53:1289-95.
30. Grieser C, Steffen IG, Gartenschlager S, et al. Assessment of the cerebellar arteries with multidetector computed tomography angiography benefits from submillimeter slice thickness. Clin Imaging 2011;35:247-52.
31. Gulhan O, Harrison K, Kiris A. A new computer-tomography-based method of sex estimation: development of Turkish population-specific standards. Forensic Sci Int 2015;255:2-8.
32. Zhan MJ, LI CL, Fan F, et al. Discrimination of sex based on patella measurements in a contemporary Chinese population using multidetector computed tomography: an automatic measurement method. Leg Med (Tokyo) 2020;47:101778.